Physics (PHYS)
Introduces students to basic scientific methodology, current problems and fundamental principles of engineering design. Intended for nonscience majors and potential engineering students. Required laboratory introduces fundamental science and engineering principles through collaborative projects such as robotics.
This is the first of a two-semester sequence, designed primarily for students in the biological and health sciences and others who desire a rigorous but non-calculus-based course that presents a complete introduction to physics. Covers vectors, one and two dimensional motion, Newton's laws, and rotational motion, conservation of energy and momentum, gravitation, wave motion, sound, heat and thermodynamics.
This is the second of a two-semester sequence, designed primarily for students in the biological and health sciences and others who desire a rigorous but non-calculus-based course that presents a complete introduction to physics. Covers geometrical optics, electricity and magnetism, electronics, modern physics, relativity.
Looks at historical and modern aspects of astronomy. Topics covered will include: the Earth-Moon system, our solar system, galaxies, the observable universe, as well as current research in astronomy, including quasars, pulsars, black holes, other planetary systems and the search for extraterrestrial life.
First course in a three-course introductory physics sequence which utilizes a calculus-based approach to study the natural world. This course focuses on kinematics, dynamics, conservation of energy and momentum, and rotational motion.
Second course in a three-course introductory physics sequence which utilizes a calculus-based approach to study the natural world. The course focuses on thermodynamics, waves, and optics. Required Laboratory.
Explores the discipline of physics in order to support majors in their academic work and help them understand their career options. Explores the diversity of fields within physics through presentations, reading and writing activities and interactions with peers and mentors. This seminar is required for all MCLA physics majors.
Third course in a three-course introductory physics sequence which utilizes a calculus-based approach to study the natural world. This course focuses on electricity and magnetism, including Maxwell's Laws. Required Laboratory.
Studies particle motion in two- and three-dimensions, systems of particles, rigid bodies, moving coordinates systems, and Lagrange's equations.
Studies electrostatics, magnetostatics, electrodynamics, Maxwell's equations and its applications. Applications include electromagnetic properties of matter, wave propagation, radiating systems and special relativity.
Provides experience in building and analyzing analog and digital circuits and becoming familiar with the standard electronics lab equipment, such as oscilloscopes, power supplies, function generators, and multimeters. Students will build circuit containing resistors, capacitors, inductors, transistors, and logic gates and analyze these circuits, which entails calculating the theoretical output (voltage, current, signal shape) and comparing these predictions to the experimental output.
Studies the discovery of various physical phenomena which led to the development of quantum mechanics and introductory quantum mechanics.
Explores the foundational mathematical methods essential for solving physical problems. The course introduces students to a diverse array of mathematical tools and techniques necessary for problem-solving and modeling in the physical sciences. Topics covered include vector calculus, linear algebra, Fourier analysis, and differential equations. Required Laboratory.
Introduces students to the fundamental principles, techniques, and tools of computational physics using the python programming language. In the modern era, computational methods are indispensable for modeling, simulating, and analyzing complex physical systems that are often beyond the reach of analytical solutions. Topics include programming, data visualization and interpretation, numerical integration and differentiation, ordinary and partial differential equations.
Studies laboratory techniques to supplement senior physics courses or work on special projects with departmental approval. Use of current computer technology is integral.
Continues Physics 401. Use of current computer technology is integral.
Introduces the concepts necessary to understand the structure of matter at the most fundamental level. Considers matter in terms of its most elementary constituents, and discusses the properties, classifications, and forces which act on these particles. Discusses the relationship between conservation laws and symmetries. The experimental study of elementary particles is discussed throughout the course. Concludes with a discussion of outstanding questions in the field.
Studies the principles of physical optics. Topics include reflection, refraction, interference, diffraction, polarization, and Fresnel's equations for transmittance and reflectance at plane dielectric interfaces. Additional topics will include optical instruments and modern applications of optics.
Studies statistical techniques applied to physical phenomena. Topics include kinetic theory of gasses, classical thermodynamics and quantum statistical physics.
Studies inadequacies of classical mechanics and explores ways of describing nature at the atomic level. Topics include the Schrödinger equation and its solutions for various simple systems, expectation values, operator formalism and matrix representation.
Provides the opportunity for a student to assist in the preparation and/or implementation of a physics course.
Open to juniors and seniors who wish to read in a given area or to study a topic in depth. Written reports and frequent conferences with the advisor are required.
Participation in research in physics under the direction of a member of the physics faculty in a specific area.
Offers the upper-level physics major an opportunity to practice physics in an appropriate professional situation. The student will work with a faculty sponsor and an off-campus supervisor in gaining experience significant to the major.
Studies concepts, problems, issues, topics or themes that are important in the field of physics. Special topic seminars may explore a variety of topics including but not limited to: physics for educators, solid state physics, robotics and engineering applications. Lab may be required depending on topic.